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Peristaltic transport of MHD Carreau fluid under the effect of partial slip 
with different wave forms 

M. Sukumar* and S.V.K. Varma 
 

Abstract: This article investigates with the effects of magnetic field and partial slip on the peristaltic transport of Carreau fluid with different wave form the 
model in an asymmetric channel has been investigated. The problem is simplified by using long wavelength and low Reynolds number approximations. The 
perturbation and numerical presented. The expressions for pressure rise, pressure gradient, stream function, magnetic force function, current density 
distribution have been computed. The results of pertinent parameters have been discussed graphically. The trapping phenomena for different wave forms have 
been also discussed.   
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——————————      —————————— 
 

1. Introduction 
 
Peristaltic pumping has been the object of scientific and engineering research in 
recent years. The word peristaltic comes from a Greek word Peristaltikos which 
means clasping and compressing. The peristaltic transport is traveling contraction 
wave along a tube-like structure, and it results physiologically from neuron-muscular 
properties of any tubular smooth muscle. Peristaltic motion of blood in animal or 
human bodies has been considered by many authors. It is an important mechanism 
for transporting blood, where the cross-section of the artery is contracted or 
expanded periodically by the propagation of progressive wave. It plays an 
indispensable role in transporting many physiological fluids in the body in various 
situations such as urine transport from the kidney to the bladder through the ureter, 
transport of spermatozoa in the ducts efferentes of the male reproductive tract and 
the movement of ovum in the fallopin tubes. Some worms to make locomotion using 
the mechanism of peristalsis. Roller and finger pumps using viscous fluids also 
operate on this principle, gastro-intestinal tract, bile ducts and other glandular ducts. 
The principle of peristaltic transport has been exploited for industrial applications like 
sanitary fluid transport, blood pumps in heart lungs machine and transport of 
corrosive fluids where the contact of the fluid with the machinery parts is prohibited. 
Since the first investigation of Latham [1], extensive analytical studies have been 
undertaken which involve such fluids. Important studies to the topic include the 
works in [2–11]. 
 

   
 
 
 
 Recently, MHD peristaltic flows have acquired a lot of credence due to their 
applications. The effects of MHD on the peristaltic flow of Newtonian and non-
Newtonian fluids for different geometries have been discussed by many 
researchers [12–15], with a view to understand some practical phenomena 
such as blood pump machine and Magnetic Resonance Imaging (MRI) which 
is used for diagnosis of brain, vascular diseases and all the human body. In 
the studies [12–15], the uniform MHD has been used. There are a few 
attempts in which induced magnetic field is used. They are mentioned in the 
works of [16–25]. The flow of Carreau fluid with partial slip under the effect of 
magnetic field with different wave forms and yield stress on the pumping 
characteristics have been reported in their investigation, the assumption for 
the solution is that wavelength of the peristaltic wave is long. A regular 
perturbation technique is employed to solve the present problem and 
solutions are expanded in a power of small Weissenberg number. The 
analysis is made for the stream function, axial pressure gradient and pressure 
rise over a wavelength. The influence of emerging parameters is shown on 
pumping, pressure gradient and trapping. 
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2. Mathematical formulation 
Let us consider the peristaltic transport of an incompressible Carreau fluid 

under the effect of magnetic field in a two–dimensional channel of width 21 dd + . The 
flow is generated by sinusoidal wave trains propagating with constant speed c along 
the asymmetric channel with partial slip. The geometry of the wall surfaces is 
defined as 

    ( ) ( )1 1 1
2, cosh X t d a X ctπ
λ

 = + −  
……………. upper walls         (1) 

( ) ( )2 2 2
2, cosh X t d a X ctπ φ
λ

 = − − − +  
……   lower wall   (2) 

in which 1a  and 2a are the amplitudes of the waves, λ  is the wave length, c  is the 
wave speed, φ  ( )πφ ≤≤0  is the phase difference, X and Y  are the rectangular 
coordinates with X measured along the axis of the channel and Y is perpendicular 
to X . Let ( )VU ,  be the velocity components in fixed frame of reference ( )YX , . It 
should be noted that 0= φ it corresponds to symmetric channel with waves out of 
phase and for πφ = the waves are in phase. Furthermore, 1 2 1 2,  ,  ,  anda a d d φ  satisfy 
the condition  

( )22 2
1 2 1 2 1 22 cosa a a a d dφ+ +  ≤ +

.    (3) 
 

3. Equations of motion 
 
The constitutive equation for a Carreau fluid is  

( ) ( )( ) ,1 2
1

2 γγηηητ 











Γ+−+−=

−

∞0∞

n

     (4) 

where τ is the extra stress tensor, 
∞η is the infinite shear  rate 

viscosity, 
0η  is the zero shear-rate viscosity, Γ is the time constant, 

n is the dimensionless power law index and γ is defined as 

1 1
2 2ij ji

i j
γ γ γ= = Π∑∑ � ��  .   (5) 

here Π is the second invariant of strain- rate tensor. We consider in the 
constitutive Eq. (4) the case for which 0=∞η , and so we can write 

   ( )
1

2 2
0 1 .

n

τ η γ γ
−

 = − + Γ  
 ��     (6) 

The above model reduces to Newtonian Model for n=1 or 0Γ = . 

The flow is unsteady in the laboratory frame ( )YX , . However, if observed in 
a moving coordinate system with the wave speed c (wave frame) ( )yx,  it 
can be treated as steady. The coordinates and velocities in the two 
frames are 

   ,, YytcXx =−= ( ) ( ), ,  ,u x y U c v x y V= − = ,    (7) 

where u  and v indicate the velocity components in the wave frame. The 
equations the following of a Carreau fluid are given by 

0=
∂
∂

+
∂
∂

y
v

x
u

,     (8) 

0 ,x yx xpu v u B u
x y x x y

ττ
ρ σ

∂∂ ∂ ∂ ∂
+ = − − − − ∂ ∂ ∂ ∂ ∂ 

    (9) 

   .x y y ypu v v
x y y x y

τ τ
ρ

∂ ∂ ∂ ∂ ∂
+ = − − − ∂ ∂ ∂ ∂ ∂ 

    (10) 

   The following non-dimension quantities are also defined 
     

1
1

1 1

,  ,   ,   ,   ,   hx y u v cx y u v t t h
d c c dλ λ

= = = = = = ,

12 1
2

1 0 0

, , , ,xx xy yyx x x y y y

h ddh
d c c c

λτ τ τ τ τ τ
η η η0

= = = =  

1d
c

γγ =
�

� , 1dδ
λ

= , 
1

cWe
d
Γ

= , 
2

1

0

dp p
cλη

= , 1

0

e cdR ρ
η

= ,  

0 1
0

M B dσ
η

= , 
2

1

kDa
d

= , 1

1

aa
d

= , 2

1

ab
d

= , 2

1

dd
d

= .     (11) 

     and the stream function ( )yx,ψ is defined by 

     , .u v
y x
ψ ψδ∂ ∂

= = −
∂ ∂

    (12) 
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Fig. 1: The axial velocity 𝒖 with y for a=0.43, b=0.5, d=1, 2Q =  , x=1, 

6
πφ =  ; (a) We=0.001, n=0.398, β=0.01; (b) We=0.001, n=0.398, M=1; (c) M=1, n=0.398, β=0.01; 

(d) We=0.001, M=1, β=0.01. 
    
   Using the above non-dimensional quantities have given in the    Eqs. (8) - (10), 

2Re ,
2

xyxxp M
y x x y y x x y y

ττψ ψ ψ δ ψδ
2 ∂   ∂∂ ∂ ∂ ∂ ∂ ∂ ∂

− = − − − −  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  
      (13) 

3 Re .xy yyp
y x x y x y x y

τ τψ ψ ψδ δ δ2 ∂ ∂  ∂ ∂ ∂ ∂ ∂ ∂
− − = − − −  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  

                            (14) 

 

Where   ( ) 2
2 21

2 1 ,
2xx

n
We

x y
ψτ γ

 − ∂
= − +  ∂ ∂ 

                              (15) 

( ) 2 2
2 2 2

2 2

1
1 ,

2xy

n
We

y x
ψ ψτ γ δ

 −  ∂ ∂
= − + −   ∂ ∂  

      (16) 

( ) 2
2 21

2 1 ,
2yy

n
We

x y
ψτ δ γ

 − ∂
= +  ∂ ∂ 

                                         (17) 

             

1
2 2 22 2 2

2 22 2
x y y x x y
ψ ψ ψ ψγ δ δ δ

2
2 2 2

      ∂ ∂ ∂ ∂
= + − +      ∂ ∂ ∂ ∂ ∂ ∂       
 .       (18) 

andδ , Re and We are the wave, Reynolds and Weisssenberg numbers, 
respectively. Under the assumptions of long wavelength and low Reynolds number, 
Eqs. (13) - (14) after using Eq. (16) become 

       
( ) 22 2

2 2
2 2

1
1 ,

2
np We M

x y y y y
ψ ψ ψ −  ∂ ∂ ∂ ∂ ∂

 = + − ∂ ∂ ∂ ∂ ∂   
                                           (19) 

       0.p
y

∂
=

∂
                  (20) 

       The pressure p is an eliminating from Eqs. (19)- (20), we finally get 

       ( ) 22 2 2 2
2 2

2 2 2 2

1
1 0.

2
n

We M
y y y y

ψ ψ ψ  −  ∂ ∂ ∂ ∂  + − =  ∂  ∂ ∂  ∂   

                           (21) 

 
4. Rate of volume flow  

 
In laboratory frame, the dimensional volume flow rate is 

 

 ( )
( )

( )1

2

,

,

, ,
h X t

h X t

Q U X Y t dY= ∫ .    (22) 
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Fig. 2: The pressure distribution dp dx  with x  for a=0.5, b=0.5, d=1, 2Q = −  ,

6
πφ = ; (a) We=0.001, n=0.398, β=0.01; (b) We=0.001, n=0.398, M=1; (c) M=1, n=0.398, 

β=0.01; (d) We=0.001, M=1, β=0.01.            
 
 

in which 1h and 2h are functions of X and t , the above expression in 
the wave frame becomes 

( )
( )

( )

∫=
xh

xh

ydyxuq
1

2

,,     (23) 

where 1h and 2h are only functions of x , from Eqs. (7), (22) and 
(23) we can write 

( ) ( ).21 xhcxhcqQ −+=     (24)
  
The time- averaged flow over a period T at a fixed position X is given 
as 

0

1 T

Q Qdt
T

= ∫ .                                          (25)           

where 

              
1 1

,   ,FQ q
cd cd
θ

= =     (26) 

in which 

( )( ) ( )( )
( )

( )
∫ −=

∂
∂

=
xh

xh
xhxhdy

y
F

1

21
2

ψψ
ψ

.   (27) 

              here, ( )xh1  and ( )xh2 represent the dimensionless form of the 
              surfaces of  the peristaltic walls 
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   the resulting equations in terms of stream function can be written as  
 

( )1 1 cos 2 ,h x a xπ= +      (28) 

( ) ( )2 cos 2 .h x d b xπ φ= − − +      (29) 
 

on substituting (24) into (25) and performing the integration, we obtain 
 

1 2F cd cdθ = + + ,                              (30) 

 
 
inserting Eq. (26) into Eq. (30), yields  

 
1Q q d= + + .     (31) 

 
 
 
 

 

                                

                                
Fig. 3: The pressure rise  Pλ∆  with Q for a=0.5, b=0.5, d=1 , 

6
πφ =  ; (a) We=0.001, n=0.398, β=0.01; (b) We=0.001, n=0.398, M=1; (c) M=1, n=0.398, β=0.01; (d) 

We=0.001, M=1, β=0.01. 
 
 
5.  Boundary conditions 

In the wave frame, the boundary conditions in terms of streams function ψ  are   
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1( )
2
q at y h xψ = = ,      (32) 

2 ( )
2
q at y h xψ −

= = ,     (33) 

2

12 1 ( )at y h x
y y
ψ ψβ∂ ∂

+ = − =
∂ ∂

,      (34) 

2

22 1 ( )at y h x
y y
ψ ψβ∂ ∂

− = − =
∂ ∂

.     (35) 

 
6. Perturbation solution 

 
For perturbation solution, we expandψ , q and p as 

( )2 4
0 ,We O Weψ ψ ψ1= + +      (36) 

( )2 4
0 ,q q We q O We1= + +     

     (37) 

( )2 4
0 .p p We p O We1= + +     

     (38) 
 System of order 0We : 

         
4 2

20 0
4 2 0,M

y y
ψ ψ∂ ∂

− =
∂ ∂

    

     (39) 

          
3

0 0 0
3 ,p M

x y y
ψ ψ∂ ∂ ∂

= −
∂ ∂ ∂

    (40) 

       ( )0
0 12

q at y h xψ = = ,    (41) 

     ( )0
0 22

q at y h xψ
−

= = ,    (42) 

( )
2

0 0
12 1 at y h x

y y
ψ ψ

β
∂ ∂

+ = − =
∂ ∂

,    (43) 

( )
2

0 0
22 1 at y h x

y y
ψ ψ

β
∂ ∂

− = − =
∂ ∂

.    (44) 

 
 System of order 2We  

             
( ) 324 22

201 1
4 2 2 2

1
0,

2
n

M
y y y y

ψψ ψ −  ∂∂ ∂∂
 + − = ∂ ∂ ∂ ∂   

               (45) 

             
( ) 323

201 1 1
3 2

1
,

2
np M

x y y y y
ψψ ψ −  ∂∂ ∂ ∂∂

 = + − ∂ ∂ ∂ ∂ ∂   
              (46) 

              ( )1
1 12

q at y h xψ = = ,               (47) 

              ( )1
1 22

q at y h xψ −
= = ,    (48) 

 ( )
2

1 1
12 0 at y h x

y y
ψ ψβ∂ ∂

+ = =
∂ ∂

,     (49)

  

              
2

1 1
22 0 ( )at y h x

y y
ψ ψβ∂ ∂

− = =
∂ ∂

.    (50) 

 
6.1 Solution for system of order 0We : 

 
Solving Eq. (39) and then using the boundary conditions given in (41) - (44) 
we have 

0 1 2 3 4cosh sinh .C C y C My C Myψ = + + +             (51) 
Where 
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Fig. 4: The shear stress xyτ  with y  for a=0.5, b=0.5, d=1, 1.5Q = , x=1, 

6
πφ = ; (a) We=0.001, n=0.398, β=0.01; (b) We=0.001, n=0.398, M=1; (c) M=1, n=0.398, β=0.01; 

(d) We=0.001, M=1, β=0.01.  
 

 

( ) ( )

( ) ( )

21 2 1 2
1 1 1 2

1
2 1 2 1 2

1 2 1 2

cosh 2 sinh
2 2 ,

2 2 sinh cosh
2 2

h h h hMqh M M q h q h h M
qC

h h h hM h h M M h h M

β

β

− −    + + − + −       = +
− −    − − − −        

 

( )

( )( ) ( )

2 1 2 1 2

2
2 1 2 1 2

1 2 1 2

2 sinh cosh
2 2 ,

2 sinh cosh
2 2

h h h hM q M Mq M
C

h h h hM h h M M h h M

β

β

 − −    + +        = −
 −  −   − − − −        

 

          
( )

( ) ( )

1 2
1 2

3
2 1 2 1 2

1 2 1 2

sinh
2 ,

2 sinh cosh
2 2

h hq h h M
C

h h h hM h h M M h h Mβ

 +  + −     = −
− −    − − − −        

 

( )

( ) ( )

1 2
1 2

4
2 1 2 1 2

1 2 1 2

cosh
2 .

2 sinh cosh
2 2

h hq h h M
C

h h h hM h h M M h h Mβ

+ + −  
 =

− −    − − − −        

 

           The expressions for the axial pressure gradient at this order is 

( )

( )( )

2 2 1 2 1 2

0

2 1 2 1 2
1 2 1 2

2 sinh cosh
2 2 .

2 sinh ( )cosh
2 2

h h h hM M q M Mq M
dp
dx h h h hM h h M M h h M

β

β

 − −    + +        =
 −  −   − − − −        

       (52) 

 
         Integrating Eq. (52) over per wavelength we get 

1
0

0
0

dpP dx
dxλ∆ = ∫ .                      (53) 

 
6.2 Solution for system of order 2We   

 
Substituting the zeroth-order solution (51) and Eq. (45) and solving the resulting 
system along with the corresponding boundary conditions  

Eqs. (47)- (50), we obtain  

( ) ( ) ( )( )
( )( ) ( ) ( )( )

1 5 6 7 8
4

2 2 2 2
3 3 4 4 4 3

5 2 3
3 4 3 4 3 4

cosh sinh

       1 3 cosh 3 3 sinh 3
64
3        1 2 cosh 2 sinh .

16

C C y C My C My
M n C C C My C C C My

M n C C C MC y My MC y C My

ψ = + + +

− − + + +

− − − + + +

(54) 
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( ) ( )

( ) ( )

5 8 51 1
5 6 8

1 2 7 1 2 7 7 1 2

1
1 2 8 3 4 1

1 2 7 1 2

sinh
2

cosh       cosh cosh ,    
sinh sinh

qL L Lh Mhq qC L q L
h h L h h L L h h

Mh M qMh Mh L L L L
M Mh Mh L h h

   
= + + + − − +    − − −  

  
+ − + + − −   − −  

   
 

( ) ( )
5 8 5

6 6
1 2 1 2 7 7

1  ,qL L LC q L
h h h h L L

 
= − − −  − − 

 

( )
( )

( )
( )1 2 3 4

7 8
1 2 7 1 2

cosh cosh1  ,
sinh sin h

Mh Mh L LqC L
Mh M L h h M

  − −−
= + +    − −  

 

( )8 8
7 1 2

1  ,qC L
L h h

 
= +  −   

( ) ( ) ( )( )
( ) ( )( )

4
2 2 2 2

1 3 3 4 1 4 4 3 1

5 2 2
1 3 4 3 1 4 1

1 3 cosh3Mh 3 sinh3Mh
64

3         1 sinh cosh ,
16

ML n C C C C C C

M n h C C C Mh C Mh

= − − + + +

− − − +

 

( ) ( ) ( )( )
( ) ( )( )

4
2 2 2 2

2 3 3 4 2 4 4 3 2

5 2 2
2 3 4 3 2 4 2

1 3 cosh3Mh 3 sinh3Mh
64

3         1 sinh cosh ,
16

ML n C C C C C C

M n h C C C Mh C Mh

= − − + + +

− − − +
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Fig. 5: The stream lines for a=0.5, b=0.5, d=1 , 0φ = , We=0.001, n=0.398, β=0.01, M=1; (a) 1Q = ; (b) 1.5Q = ; (c) 2Q = . 
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Fig. 6: The stream lines for a=0.5, b=0.5, d=1, 1.5Q =  , 0φ = , We=0.001, n=0.398, β=0.01; (a) M=1;  (b) M=3; (c) M=3.49. 
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The axial pressure gradient is given by 
 

( ) ( )
2

5 8 51
6

1 2 1 2 7 7

 .qL L Ldp M q L
dx h h h h L L

 −
= − − −  − − 

             (55) 

 
Integrating Eq. (55) over are wavelength we get the pressure as 

1
1

1
0

dpP dx
dxλ∆ = ∫ .    (56) 

The perturbation series solution up to second order for stream 
functionψ , velocity u, pressure gradient dp/dx and pressure rise Pλ∆  
may be summarized as  
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Fig. 7: The stream lines for a=0.5, b=0.5, d=1, 1.5Q =  , 0φ = , n=0.398, β=0.01, M=1; (a) We=0.00; (b) We=0.001; (c) We=0.002 
 

                                           
Fig. 8: The stream lines for a=0.5, b=0.5, d=1, 1.5Q =  , 0φ = ,  n=0.398, M=1,We=0.001; (a) β=0.00; (b) β=0.025; (c) β=0.049 . 
 

  2
0 1  ,Weψ ψ ψ= +        (57) 

, 20 1dp dpdp We
dx dx dx

= +                   (58) 

2
0 1  .P P We Pλ λ λ∆ = ∆ + ∆        (59)   

The non-dimensional shear stress of the channel reduces to  
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 (60) 

     7. Results and discussion: 
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 The study of the pressure rise Q , velocity u , pressure gradient /dp dx  and shear 

stress 
xyτ  are presented and discussed for different physical quantities of interest. 

The pressure rise is an important physical measure in the peristaltic mechanism. 
The perturbation method on Weissenberg number restricted us for choosing the 
parameters for a Carreau fluid such that Weissenberg number is less than one. 
According to the values of various parameters for Carreau fluid are: n = 0.398, 
0.496 and Γ =1.04, 1.58. In Figs. 1, the axial velocity distribution is shown for 
different parameters partial slip β , Hartmann number M and Weissenberg 
number ( )1We < . In Figs. 1(a)-1(c) we found that the magnitude of the axial velocity 
decreases in the center and increases nearer at the walls of the channel with 
increasing the Hartmann number M , partial slip β and Weissenberg numberWe . Fig.          
1(d) shows a comparison of the Carreau fluid (n=0.398) and Newtonian fluid (n=1), it 
is observed that the magnitude of velocity increases from Carreau fluid to 

Newtonian fluid. Figs.2 are plotted to see the effect of the parameters β , M and We  
on the pressure gradient /dp dx . Figs. 2(b) and 2(c)  show that the pressure gradient  

/dp dx  decreases with increasing the partial slip β  and Weissenberg We , on the 
other hand, in the wider part of the channel x ∈ [0, 0.3] and x ∈  [0.6, 1] the 
pressure gradient is really small, that is, the flow can easily pass without imposition 
of a large pressure gradient. Besides, in a narrow part of the channel x ∈ [0.3, 0.6] 
a much pressure gradient is required to maintain β  andWe , it especially 
near 0.5x = . Fig. 2(a) indicates that the pressure gradient /dp dx  increases with 
increasing Hartmann number M and the maximum pressure gradient is also 
near 0.5x = . Fig. 2(d) indicated that the pressure gradient in Newtonian fluid (n=1) is 
slightly high comparing with Carreau (n=0.398). 

 

              

          
 

Fig. 9: The stream lines for a=0.5, b=0.5, d=1, 1.5Q = , 0φ = , n=0.398, M=1,We=0.001;  β=0.01; (a) Sinusoidal; (b) Trapeziodal;(c) Square;(d) Triagle;(e) Sawtooth waves. 
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0Q < and 0Pλ∆ >  is called retrograde (or) backward pumping. It is shows that 
there is a nonlinear relation Pλ∆  versusQ . Fig. 3(a) is a graph of the pressure 
rise Pλ∆ per wavelength versus he mean flow rate Q  of the asymmetric channel 
for fixed values of other parameters. We observed that an increases in the 
Hartmann number M result decrease in the peristaltic pumping rate and also in 
an increase in the pressure rise. Figs 3(b) and 3(c) show the variation of 
pressure rise Pλ∆ with flow rate Q for values of partial slip β  and Weissenberg 
number We respectively. We observe that the peristaltic pumping rate decrease 
with increase β andWe . Fig. 3(d) reveals that variation of Pλ∆ with Q  for a 
Carreau fluid and Newtonian fluid. It is an indicated that the Newtonian fluid 
peristaltic pumping rate is more than a Carreau fluid. The variation of the axial 

shear stress xyτ with y  is calculated from Eq. (60) and is shown in Figs.4 for 
different physical parameters. In Figs. 4(a) and 4(c) we observed that the curves 
intersect at origin and the axial shear stress xyτ  decreases with increasing the 

Hartmann number M and Weissenberg numberWe   in the upper wall and an 
opposite behavior is observed in the lower wall of the channel. The relation 
between the shear stress xyτ  and y at different values the partial slip parameter 

β  is depicted in Fig. 4(b). We observe that the curves intersect at the origin and 
the shear stress xyτ  increases with increasing the partial slip parameter β  upper 
wall of the channel while an opposite behavior is observed in lower wall of the 
channel. It is observed from Fig. 4(d) that a Carreau fluid shear stress xyτ  is less  

                

       
Fig. 10: The stream lines for a=0.5, b=0.5, d=1, 1.5Q = , 0φ = , n=1, M=1,We=0.001;  β=0.01; (a) Sinusoidal; (b) Trapeziodal;(c) Square; (d) Triagle; (e) Sawtooth waves. 
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than to the Newtonian fluid in upper channel and also an opposite behavior in 
lower channel. 
7.1 Trapping phenomena  
                Another interesting phenomenon in peristaltic motion is the trapping. It 
is basically the formation of an internally circulating bolus of fluid by closed 
stream lines. The trapped bolus will be pushed ahead along the peristaltic 
waves. The stream lines are calculated form Eq. (57) and plotted in Figs. 5-10.  
Figs. 5 and 7 shows the effects of the volume flow rate Q  and Weissenberg 
number We on the stream lines, it is found that the size of the bolus increases 
with increase Q andWe .  It is shown in Figs. 6 that the size of bolus decreases 
with increasing the Hartmann number M while the bolus disappears 
for M =3.49. Fig.8 is depicted for various values of the partial slip parameter β , 
It is found that the volume of the trapping bolus decreases as the partial slip 
parameter β  increases, moreover, the bolus disappears at β =0.049. Figs. 9-10 
compare for different wave forms like sinusoidal, triangular, trapezoidal , square 
and sawtooth wave,  it is finally observed that the volume of trapping bolus of the 
a Carreau fluid(n=0.398)  large in the upper channel and small in  the lower 
channel  but an opposite behavior  in the case of the Newtonian fluid(n=1). 

 
     Conclusion 

We have theoretically analyzed the problem of peristaltic flow of an 
incompressible MHD Carreau fluid in asymmetric channel under the effect on 
partial slip with different wave forms. The governing equations are transformed to 
steady non-dimensional differential equations. These equations are solved 
analytically. Interaction of various emerging parameters with peristaltic flow is 
discussed with the help of graphs. On the basis of present analysis, the following 
observations have been noted:  
• The magnitude of the velocity field increases near the walls and decreases 

at the center of the channel when increasing the Hartmann number M and 
partial slip parameter β . 

• The pressure gradient decreases with increasing the partial slip 
parameter β  and Weissenberg numberWe . 

• In the peristaltic pumping region the pressure rise decreases with 
increasingWe ,  β  In the and M . 

• The shear stress distribution decreases in the upper wall and 
increases in the lower wall of the channel with increasing 
M andWe .   

• The size of tapping bolus decreases with increase β  and M  while it 
disappears at M =3.49 and β =0.06. 

Appendix: Expressions for wave shapes 

 
 The non-dimensional expressions for the five considered wave forms are 
given by the following equations: 
 

I. Sinusoidal wave: 
( ) ( )1 1 sinh x a x= + ,    (A.1) 

( ) ( )2 sinh x d b x φ= − − + ,    (A.2) 
II. Triangular wave: 
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III. Square wave: 
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1
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IV. Trapezoidal wave: 
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V. Sawtooth wave: 

               [ ]
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